Intermediate exam T4

Thermodynamics and Statistical Physics 2019-2020
 Friday 29-11-2019; 19:00-21:00

Read these instructions carefully before making the exam!

- Write your name and student number on every sheet.
- Make sure to write readable for other people than yourself. Points will NOT be given for answers in illegible writing.
- Language; your answers have to be in English.
- Use a separate sheet for each problem (see figure below).
- Use of a (graphing) calculator is allowed.
- This exam consists of $\mathbf{3}$ problems.
- The weight of the problems is Problem 1 ($\mathrm{P} 1=30$ pts); Problem 2 ($\mathrm{P} 2=30 \mathrm{pts}$); Problem 3 (P3=30 pts). Weights of the various subproblems are indicated at the beginning of each problem.
- The grade of the exam is calculated as $(\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+10) / 10$.
- For all problems you have to write down your arguments and the intermediate steps in your calculation, else the answer will be considered as incomplete and points will be deducted.

| PROBLEM 1 |
| :--- | :--- |
| Name S-number |

PROBLEM 1 Score: $a+b+c+d+e+f=4+6+6+4+5+5=30$

Consider a crystal of N molecules. The molecules do not interact with each other and are identical but distinguishable by their location in the crystal. Each molecule has a ground state that is two-fold and an excited state that is three-fold degenerate. The energy of the ground state is zero; the energy of the excited state is ε.
a) If n of the N molecules are in the excited state, argue that the number of microstates $\Omega(n)$ is given by:

$$
\Omega(n)=3^{n} 2^{N-n} \frac{N!}{n!(N-n)!}
$$

b) Calculate the energy E of this system (in terms of ε, k, T and N) using the expression from a). In this problem you may assume that both n and N are large numbers and that the use of Stirling's approximation is justified.

We now assume that the crystal is in equilibrium with a heat bath at temperature T.
c) Write down the partition function for one of these molecules and show that the mean energy $\langle E\rangle$ for a single molecule is:

$$
\langle E\rangle=\varepsilon \frac{1}{1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}}
$$

What is the relation with the answer in b ?
d) Give the partition function of the crystal of N molecules. Motivate your answer.
e) Calculate the heat capacity C_{V} of this crystal of N molecules as a function of temperature.
f) Calculate the heat capacity in limiting situations the $T \rightarrow 0$ (very low temperature) and $T \rightarrow \infty$ (very high temperature).

PROBLEM 2 Score: $a+b+c+d=8+7+7+8=30$

The figure below shows a 1D-crystal of N identical molecules of mass M that are bound together by van der Waals forces. The crystal is in equilibrium with a heat bath at temperature T.

The van der Waals forces in this crystal lead to a quadratic dependence of the potential energy on the coordinate that describes the displacement of the molecule in the x-direction (relative to its equilibrium position). This leads to the following expression for the total energy $E_{\text {molecule }}$ of a molecule,

$$
E_{\text {molecule }}=\frac{1}{2} M v_{x}^{2}+\alpha x^{2}
$$

with v_{x} the velocity of the molecule and α a positive constant quantifying the strength of the van der Waals interaction.
a) Use the Boltzmann distribution to show that the contribution to the mean energy of a molecule of the potential energy term is given by: $\left\langle\alpha x^{2}\right\rangle=\frac{1}{2} k T$.
b) State the equipartition theorem.
c) Give an expression for the mean total energy $\left\langle E_{\text {crystal }}\right\rangle$ of the 1D-crystal.

Suppose the molecules also have an internal structure that allows rotation along one principal axis and vibration in the y-direction. The rotation mode is excited above temperature T_{r} and the vibration mode above temperature $T_{v}>T_{r}$.
d) Calculate the heat capacity C_{V} of the 1D-crystal of molecules with internal structure for each of the following three temperature ranges $T<T_{r} ; T_{r}<T<T_{v}$; and $T>T_{v}$ and make a plot of the temperature dependence of this heat capacity. Take into account the third law for the situation at $T=0$.

PROBLEM 3 Score: $a+b+c+d=8+7+7+8=30$

Consider a spinless diatomic molecule with mass m that is enclosed in a volume V. The atom is in equilibrium with a heat bath at temperature T.

HINT: The density of states due to translational motion for a spinless particle confined to an enclosure with volume V is (expressed as a function of the particle's momentum p):

$$
f(p) d p=\frac{V}{h^{3}} 4 \pi p^{2} d p
$$

a) Show that the single molecule partition function $Z_{1}^{\text {trans }}$ for the translational modes of the molecule is given by,

$$
Z_{1}^{\text {trans }}=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}}
$$

Suppose for the diatomic molecule the vibrational and rotational modes are independent and their energy levels are given by $E_{i, j}=E_{i}^{v i b}+E_{j}^{r o t}$, in which $E_{i}^{v i b}$ is the i-th ($i=$ $1,2,3, \cdots)$ energy level due to vibrational motion and $E_{j}^{\text {rot }}$ the j-th $(j=1,2,3, \cdots)$ energy level due to rotational motion.
b) Show that the total single molecule partition function of the diatomic molecule can be written as:

$$
Z_{1}=Z_{1}^{\text {trans }} Z_{1}^{\text {int }} \text { with } Z_{1}^{\text {int }}=Z_{1}^{\text {vib }} Z_{1}^{\text {rot }}
$$

with $Z_{1}^{v i b}$ and $Z_{1}^{\text {rot }}$ the single molecule partition function for vibrational and rotational motion, respectively.
c) Suppose we have a classical ideal gas of N of these molecules enclosed in a volume V. What are the two assumptions that justify writing the N-molecule partition function as:

$$
Z_{N}=\frac{1}{N!}\left(Z_{1}\right)^{N}
$$

d) Use Z_{N} to calculate the pressure p of this classical ideal gas of N diatomic molecules. Does the vibrational and rotational motion of the molecules contribute to this pressure? Explain your answer.

Solutions

PROBLEM 1

a)

There are $\frac{N!}{(N-n)!n!}$ ways to pick n molecules out of N. The factors 2^{N-n} and 3^{n} account for the 2- and 3-fold degeneracy of the ground state and the excited state, so for each molecule in these states there are 2 and 3 possibilities, respectively.
b)

The entropy S is given by,

$$
S=k \ln \Omega(n)=k \ln \left(3^{n} 2^{N-n} \frac{N!}{n!(N-n)!}\right)
$$

Using Stirling's approximation this can be written as:

$$
\begin{aligned}
S=k(n \ln 3+ & (N-n) \ln 2 \\
& +N \ln N-N-n \ln n+n-(N-n) \ln (N-n)+(N-n))
\end{aligned}
$$

The temperature is given by,

$$
\frac{1}{T}=\frac{\partial S}{\partial E}=\frac{\partial S}{\partial n} \frac{\partial n}{\partial E}
$$

With $E=n \varepsilon$ we find,

$$
\begin{gathered}
\frac{1}{T}=\frac{\partial S}{\partial n} \frac{\partial n}{\partial E}=\frac{1}{\varepsilon} \frac{\partial S}{\partial n}=\frac{k}{\varepsilon}(\ln 3-\ln 2-1-\ln n+1+\ln (N-n)+1-1) \\
=\frac{k}{\varepsilon}\left(\ln \frac{3}{2}-\ln n+\ln (N-n)\right)=\frac{k}{\varepsilon} \ln \left(\frac{3(N-n)}{2 n}\right) \Rightarrow \\
\frac{\varepsilon}{k T}=\ln \left(\frac{3(N-n)}{2 n}\right) \Rightarrow e^{\frac{\varepsilon}{k T}}=\frac{3}{2}\left(\frac{N}{n}-1\right) \Rightarrow n=\frac{N}{1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}}
\end{gathered}
$$

And

$$
E=n \varepsilon=\frac{N \varepsilon}{1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}}
$$

c)

The single molecule partition function is:

$$
Z_{1}=2+3 e^{-\beta \varepsilon}
$$

$$
\langle E\rangle=-\frac{\partial \ln Z_{1}}{\partial \beta}=\frac{3 \varepsilon e^{-\beta \varepsilon}}{2+3 e^{-\beta \varepsilon}}=\frac{\varepsilon}{1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}}
$$

Relation with \mathbf{b}); in \mathbf{b}) we have the energy of n molecules. For 1 molecule the energy will be $1 / n$ which is the mean energy found in c)
d)

$$
Z_{N}=Z_{1}{ }^{N}=\left(2+3 e^{-\beta \varepsilon}\right)^{N}
$$

Motivation: the molecules are distinguishable (by their location in the crystal) and do not interact with each other and can thus be considered as independent systems (see also B\&B equation 20.42 and text before).
e)

Because, $\ln Z_{N}=N \ln Z_{1}$ we have,

$$
U=-\frac{\partial \ln Z_{N}}{\partial \beta}=-N \frac{\partial \ln Z_{1}}{\partial \beta}=N\langle E\rangle=\frac{N \varepsilon}{1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}}
$$

And

$$
C_{V}=\frac{\partial U}{\partial T}=\frac{-N \varepsilon}{\left(1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}\right)^{2}} \times \frac{2}{3} e^{\frac{\varepsilon}{k T}} \times \frac{-\varepsilon}{k T^{2}}=\frac{2}{3} N k \frac{\left(\frac{\varepsilon}{k T}\right)^{2} e^{\frac{\varepsilon}{k T}}}{\left(1+\frac{2}{3} e^{\frac{\varepsilon}{k T}}\right)^{2}}
$$

f)

If $T \rightarrow 0$ then with $x=\frac{\varepsilon}{k T} \rightarrow \infty$

$$
C_{V}=\frac{2}{3} N k \frac{x^{2} e^{x}}{\left(1+\frac{2}{3} e^{x}\right)^{2}} \approx \frac{3}{2} N k x^{2} e^{-x}=\frac{3}{2} N k \lim _{x \rightarrow \infty} x^{2} e^{-x}=0
$$

If $T \rightarrow \infty$ then with $x=\frac{\varepsilon}{k T} \rightarrow 0$

$$
C_{V}=\frac{2}{3} N k \frac{x^{2} e^{x}}{\left(1+\frac{2}{3} e^{x}\right)^{2}} \approx \frac{2}{3} N k \frac{x^{2}(1+x)}{\left(1+\frac{2}{3}(1+x)\right)^{2}} \approx \frac{2}{3} N k x^{2} \frac{1}{\left(\frac{5}{3}\right)^{2}} \rightarrow 0
$$

Problem 2
a)

Using the Boltzmann distribution we find,

$$
\begin{gathered}
\left\langle\alpha x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\beta E_{\text {molecule }}} d x d v_{x}}{\int_{-\infty}^{\infty} e^{-\beta E_{\text {molecule }}} d x d v_{x}} \Rightarrow \\
\left\langle\alpha x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\beta \alpha x^{2}} d x \int_{-\infty}^{\infty} e^{-\frac{1}{2} \beta M v_{x}^{2}} d v_{x}}{\int_{-\infty}^{\infty} e^{-\beta \alpha x^{2}} d x \int_{-\infty}^{\infty} e^{-\frac{1}{2} \beta M v_{x}^{2}} d v_{x}} \Rightarrow \\
\left\langle\alpha x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\beta \alpha x^{2}} d x}{\int_{-\infty}^{\infty} e^{-\beta \alpha x^{2}} d x}=-\frac{\partial \ln I}{\partial \beta}
\end{gathered}
$$

where we have defined $I=\int_{-\infty}^{\infty} e^{-\beta \alpha x^{2}} d x$. Substitute $z^{2}=\beta x^{2}$ then $z=\sqrt{\beta} x$ and $d x=$ $\frac{d z}{\sqrt{\beta}}$ and the integral becomes,

$$
I=\frac{1}{\sqrt{\beta}} \int_{-\infty}^{\infty} e^{-\alpha z^{2}} d z
$$

and

$$
\begin{gathered}
\left\langle\alpha x^{2}\right\rangle=-\frac{\partial \ln I}{\partial \beta}=-\frac{\partial}{\partial \beta}\left[\ln \frac{1}{\sqrt{\beta}}+\ln \left\{\int_{-\infty}^{\infty} e^{-\alpha z^{2}} d z\right\}\right]=-\left[\sqrt{\beta}\left(-\frac{1}{2} \frac{1}{\beta^{\frac{3}{2}}}\right)+0\right] \Rightarrow \\
\left\langle\alpha x^{2}\right\rangle=\frac{1}{2 \beta}=\frac{1}{2} k T
\end{gathered}
$$

Or using one of the integrals of the formula sheet (with $c=\alpha \beta$)

$$
\left\langle\alpha x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} \alpha x^{2} e^{-\alpha \beta x^{2}} d x}{\int_{-\infty}^{\infty} e^{-\alpha \beta x^{2}} d x}=\alpha \frac{\left(\frac{1}{2} \sqrt{\frac{\pi}{c^{3}}}\right)}{\left(\sqrt{\frac{\pi}{c}}\right)}=\frac{1}{2} \alpha \frac{1}{c}=\frac{1}{2} \alpha \frac{1}{\beta \alpha}=\frac{1}{2} k T
$$

b)

For a classical system in equilibrium with a heat bath at temperature T every term in the Hamiltonian (energy) that is quadratic in one of the systems (independent) coordinates will contribute $\frac{1}{2} k T$ to the mean energy of the system.
c)

$$
\left\langle E_{\text {crystal }}\right\rangle=N\left\langle E_{\text {molecule }}\right\rangle=N\left\langle\left(\frac{1}{2} M v_{x}^{2}+\alpha x^{2}\right\rangle=N\left(2 \times \frac{1}{2} k T\right)=N k T\right.
$$

d)

At temperatures above T_{r} the rotational mode is excited, leading to one extra quadratic term in $E_{\text {molecule }}$

$$
E_{\text {molecule }}=\frac{1}{2} M v_{x}^{2}+\alpha x^{2}+\frac{L^{2}}{2 I}
$$

with L the angular momentum of the molecule along its rotational axis and I its moment of inertia.
At temperatures above T_{v} the vibrational mode in the y-direction is also excited leading to two extra quadratic terms in $E_{\text {molecule }}$

$$
E_{\text {molecule }}=\frac{1}{2} M v_{x}^{2}+\alpha x^{2}+\frac{L^{2}}{2 I}+\frac{1}{2} M v_{y}^{2}+\gamma y^{2}
$$

with γ another positive constant.
For the mean energy of the crystal in the temperature range $T_{r}<T<T_{v}$ we have, using the equipartition theorem,

$$
\left\langle E_{\text {crystal }}\right\rangle=N\left\langle E_{\text {molecule }}\right\rangle=N\left\langle\frac{1}{2} M v_{x}^{2}+\alpha x^{2}+\frac{L^{2}}{2 I}\right\rangle=\frac{3}{2} N k T
$$

and for $T>T_{r}$,

$$
\left\langle E_{\text {crystal }}\right\rangle=N\left\langle E_{\text {molecule }}\right\rangle=N\left\langle\frac{1}{2} M v_{x}^{2}+\alpha x^{2}+\frac{L^{2}}{2 I}+\frac{1}{2} M v_{y}^{2}+\gamma y^{2}\right\rangle=\frac{5}{2} N k T
$$

The heat capacities for the different temperature ranges we find with:

$$
C_{V}=\frac{\partial\left\langle E_{\text {crystal }}\right\rangle}{\partial T}
$$

as $C_{V}=N k, C_{V}=\frac{3}{2} N k$ and $C_{V}=\frac{5}{2} N k$, respectively.
The consequence of the third law is that $C_{V} \rightarrow 0$ when $T \rightarrow 0$ (see B\&B page 205).
This results in the following plot:

PROBLEM 3

a)

Single molecule partition function for translational motion:

$$
Z_{1}=\int_{0}^{\infty} f(p) e^{-\beta \frac{p^{2}}{2 m}} d p=\int_{0}^{\infty} \frac{V}{h^{3}} 4 \pi p^{2} e^{-\beta \frac{p^{2}}{2 m}} d p=\frac{4 \pi V}{h^{3}} \int_{0}^{\infty} p^{2} e^{-\beta \frac{p^{2}}{2 m}} d p
$$

Use the substitution $x^{2}=\beta \frac{p^{2}}{2 m}$ and thus $p=\sqrt{\frac{2 m}{\beta}} x$ and $d p=\sqrt{\frac{2 m}{\beta}} d x$ to find

$$
Z_{1}=\frac{4 \pi V}{h^{3}}\left(\frac{2 m}{\beta}\right)^{\frac{3}{2}} \int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{4 \pi V}{h^{3}}\left(\frac{2 m}{\beta}\right)^{\frac{3}{2}} \frac{\sqrt{\pi}}{4}=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}}
$$

The integral was solved using the formula sheet.
b)

$$
\begin{aligned}
Z_{1}=\int_{0}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} & f(p) e^{-\beta\left(\frac{p^{2}}{2 m}+E_{i}^{v i b}+E_{j}^{r o t}\right)} d p \\
& =\int_{0}^{\infty} f(p) e^{-\beta \frac{p^{2}}{2 m}} d p \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} e^{-\beta\left(E_{i}^{v i b}+E_{j}^{r o t}\right)} \\
& =\int_{0}^{\infty} f(p) e^{-\beta \frac{p^{2}}{2 m}} d p \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} e^{-\beta E_{i}^{v i b}} e^{-\beta E_{j}^{r o t}} \\
& =\int_{0}^{\infty} f(p) e^{-\beta \frac{p^{2}}{2 m}} d p \sum_{i=1}^{\infty} e^{-\beta E_{i}^{v i b}} \sum_{j=1}^{\infty} e^{-\beta E_{j}^{r o t}}=Z_{1}^{\text {trans }} Z_{1}^{v i b} Z_{1}^{\text {rot }} \\
& =Z_{1}^{\text {trans }} Z_{1}^{\text {int }}
\end{aligned}
$$

c)

The particles are indistinguishable (3 pts) because it is a gas and situations that have two or more particles occupying the same energy level do not occur (4 pts) because the gas is classical.
d)

Use the N-atom partition function:

$$
\begin{aligned}
Z_{N}=\frac{1}{N!}\left(Z_{1}\right)^{N} & =\frac{1}{N!}\left(Z_{1}^{\text {trans }} Z_{1}^{\text {int }}\right)^{N}=\frac{1}{N!}\left(V\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2}}\right)^{N}\left(Z_{1}^{\text {int }}\right)^{N} \\
& =\frac{V^{N}}{N!}\left(\frac{2 \pi m k T}{h^{2}}\right)^{\frac{3}{2} N}\left(Z_{1}^{\text {int }}\right)^{N}
\end{aligned}
$$

and use Helmholtz free energy,

$$
F=-k T \ln Z_{N}
$$

To find the pressure,

$$
p=-\left(\frac{\partial F}{\partial V}\right)_{T}=k T\left(\frac{\partial \ln Z_{N}}{\partial V}\right)_{T}=k T\left(\frac{\partial(N \ln V)}{\partial V}\right)_{T}=\frac{N k T}{V}
$$

Notice that all the factors in $\ln Z_{N}$ can be written as a sum of logarithms of which only the term $\ln V^{N}=N \ln V$ depends on the volume. All other terms become zero after the differentiation with respect to V. The internal motion of the molecule does not depend on the volume so also the term $\ln \left(Z_{1}^{i n t}\right)^{N}$ disappears after the differentiation with respect to V. Consequently, the internal motion does not contribute to the pressure.

