
Intermediate exam T4 

 

Thermodynamics and Statistical 

Physics 2019-2020 
Friday 29-11-2019; 19:00-21:00 

 

Read these instructions carefully before making the exam! 

 

• Write your name and student number on every sheet. 

• Make sure to write readable for other people than yourself. Points will 

NOT be given for answers in illegible writing. 

• Language; your answers have to be in English. 

• Use a separate sheet for each problem (see figure below). 

• Use of a (graphing) calculator is allowed. 

• This exam consists of 3 problems.  

• The weight of the problems is Problem 1 (P1=30 pts); Problem 2 

(P2=30 pts); Problem 3 (P3=30 pts). Weights of the various 

subproblems are indicated at the beginning of each problem.  

• The grade of the exam is calculated as (P1+P2+P3+10)/10. 

• For all problems you have to write down your arguments and the 

intermediate steps in your calculation, else the answer will be 

considered as incomplete and points will be deducted. 

  
PROBLEM 1
Name   S-number

PROBLEM 2
Name   S-number

PROBLEM 3
Name   S-number



  



PROBLEM 1 Score: a+b+c+d+e+f=4+6+6+4+5+5=30 

 

 

Consider a crystal of 𝑁 molecules. The molecules do not interact with each other and are 

identical but distinguishable by their location in the crystal. Each molecule has a ground 

state that is two-fold and an excited state that is three-fold degenerate. The energy of the 

ground state is zero; the energy of the excited state is 𝜀.  

 

a) If 𝑛 of the N molecules are in the excited state, argue that the number of microstates 

Ω(𝑛) is given by: 

Ω(𝑛) = 3𝑛2𝑁−𝑛
𝑁!

𝑛! (𝑁 − 𝑛)!
 

 

b) Calculate the energy 𝐸 of this system (in terms of 𝜀, 𝑘, 𝑇 and 𝑁) using the expression 

from a). In this problem you may assume that both 𝑛 and 𝑁 are large numbers and that 

the use of Stirling’s approximation is justified. 

 

We now assume that the crystal is in equilibrium with a heat bath at temperature 𝑇. 

 

c) Write down the partition function for one of these molecules and show that the mean 

energy 〈𝐸〉 for a single molecule is: 

〈𝐸〉 = 𝜀
1

1 +
2
3 𝑒

𝜀
𝑘𝑇

 

What is the relation with the answer in b? 

 

d) Give the partition function of the crystal of 𝑁 molecules. Motivate your answer. 

e) Calculate the heat capacity 𝐶𝑉 of this crystal of 𝑁 molecules as a function of 

temperature. 

f) Calculate the heat capacity in limiting situations the 𝑇 → 0 (very low temperature) and 

𝑇 → ∞ (very high temperature). 

  



PROBLEM 2 Score: a+b+c+d =8+7+7+8=30 

 

The figure below shows a 1D-crystal of N identical molecules of mass 𝑀 that are bound 

together by van der Waals forces. The crystal is in equilibrium with a heat bath at 

temperature T. 

 

 

 

 

 

 

 

 

The van der Waals forces in this crystal lead to a quadratic dependence of the potential 

energy on the coordinate that describes the displacement of the molecule in the x-direction 

(relative to its equilibrium position). This leads to the following expression for the total 

energy 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 of a molecule, 

𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2 

with 𝑣𝑥 the velocity of the molecule and 𝛼 a positive constant quantifying the strength of 

the van der Waals interaction. 

 

a) Use the Boltzmann distribution to show that the contribution to the mean energy of a 

molecule of the potential energy term is given by: 〈𝛼𝑥2〉 =
1

2
𝑘𝑇. 

b) State the equipartition theorem.  

c) Give an expression for the mean total energy 〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉 of the 1D-crystal. 

 

Suppose the molecules also have an internal structure that allows rotation along one 

principal axis and vibration in the y-direction. The rotation mode is excited above 

temperature 𝑇𝑟 and the vibration mode above temperature 𝑇𝑣 > 𝑇𝑟. 

 

d) Calculate the heat capacity 𝐶𝑉 of the 1D-crystal of molecules with internal structure for 

each of the following three temperature ranges 𝑇 < 𝑇𝑟; 𝑇𝑟 < 𝑇 < 𝑇𝑣; and 𝑇 > 𝑇𝑣 and 

make a plot of the temperature dependence of this heat capacity. Take into account the 

third law for the situation at 𝑇 = 0. 

 

 

 

 

  



PROBLEM 3  Score: a+b+c+d=8+7+7+8=30 

 

Consider a spinless diatomic molecule with mass 𝑚 that is enclosed in a volume V. The 

atom is in equilibrium with a heat bath at temperature 𝑇. 

 

 

 

 

 

 

a) Show that the single molecule partition function 𝑍1
𝑡𝑟𝑎𝑛𝑠 for the translational modes of 

the molecule is given by,  

𝑍1
𝑡𝑟𝑎𝑛𝑠 = 𝑉 (

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2
 

 

Suppose for the diatomic molecule the vibrational and rotational modes are independent 

and their energy levels are given by 𝐸𝑖,𝑗 = 𝐸𝑖
𝑣𝑖𝑏 + 𝐸𝑗

𝑟𝑜𝑡, in which 𝐸𝑖
𝑣𝑖𝑏 is the i-th (𝑖 =

1, 2, 3, ⋯ ) energy level due to vibrational motion and 𝐸𝑗
𝑟𝑜𝑡 the j-th (𝑗 = 1, 2, 3, ⋯ ) energy 

level due to rotational motion. 

 

b) Show that the total single molecule partition function of the diatomic molecule can be 

written as: 

𝑍1 = 𝑍1
𝑡𝑟𝑎𝑛𝑠𝑍1

𝑖𝑛𝑡 with 𝑍1
𝑖𝑛𝑡 = 𝑍1

𝑣𝑖𝑏𝑍1
𝑟𝑜𝑡 

 

with 𝑍1
𝑣𝑖𝑏 and 𝑍1

𝑟𝑜𝑡 the single molecule partition function for vibrational and rotational 

motion, respectively. 

 

c) Suppose we have a classical ideal gas of N of these molecules enclosed in a volume V. 

What are the two assumptions that justify writing the 𝑁-molecule partition function as: 

𝑍𝑁 =
1

𝑁!
(𝑍1)𝑁 

 

d) Use 𝑍𝑁 to calculate the pressure 𝑝 of this classical ideal gas of 𝑁 diatomic molecules. 

Does the vibrational and rotational motion of the molecules contribute to this pressure? 

Explain your answer. 

  

HINT: The density of states due to translational motion for a spinless particle confined to 

an enclosure with volume 𝑉 is (expressed as a function of the particle’s momentum p): 

𝑓(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 



Solutions 

PROBLEM 1 

 

a) 

There are 
𝑁!

(𝑁−𝑛)!𝑛!
 ways to pick 𝑛 molecules out of 𝑁. The factors 2𝑁−𝑛 and 3𝑛 account for 

the 2- and 3-fold degeneracy of the ground state and the excited state, so for each molecule 

in these states there are 2 and 3 possibilities, respectively. 

 

b) 

The entropy 𝑆 is given by, 

 

𝑆 = 𝑘 ln Ω(𝑛) = 𝑘 ln (3𝑛2𝑁−𝑛
𝑁!

𝑛! (𝑁 − 𝑛)!
) 

 

Using Stirling’s approximation this can be written as: 

 

𝑆 = 𝑘(𝑛 ln 3 + (𝑁 − 𝑛) ln 2
+ 𝑁 ln 𝑁 − 𝑁 − 𝑛 ln 𝑛 + 𝑛 − (𝑁 − 𝑛) ln(𝑁 − 𝑛) + (𝑁 − 𝑛)) 

 

The temperature is given by, 

 
1

𝑇
=

𝜕𝑆

𝜕𝐸
=

𝜕𝑆

𝜕𝑛

𝜕𝑛

𝜕𝐸
 

With 𝐸 = 𝑛𝜀 we find, 

 
1

𝑇
=

𝜕𝑆

𝜕𝑛

𝜕𝑛

𝜕𝐸
=

1

𝜀

𝜕𝑆

𝜕𝑛
=

𝑘

𝜀
(ln 3 − ln 2 − 1 − ln 𝑛 + 1 + ln(𝑁 − 𝑛) + 1 − 1)

=
𝑘

𝜀
(ln

3

2
− ln 𝑛 + ln(𝑁 − 𝑛)) =

𝑘

𝜀
ln (

3(𝑁 − 𝑛)

2𝑛
) ⇒ 

 

 

𝜀

𝑘𝑇
= ln (

3(𝑁 − 𝑛)

2𝑛
) ⇒ 𝑒

𝜀
𝑘𝑇 =

3

2
(

𝑁

𝑛
− 1) ⇒ 𝑛 =

𝑁

1 +
2
3 𝑒

𝜀
𝑘𝑇

 

 

And 

𝐸 = 𝑛𝜀 =
𝑁𝜀

1 +
2
3 𝑒

𝜀
𝑘𝑇

 

 

c) 

The single molecule partition function is: 

 

𝑍1 = 2 + 3𝑒−𝛽𝜀 

 



 

〈𝐸〉 = −
𝜕 ln 𝑍1

𝜕𝛽
=

3𝜀𝑒−𝛽𝜀

2 + 3𝑒−𝛽𝜀
=

𝜀

1 +
2
3 𝑒

𝜀
𝑘𝑇

 

 

Relation with b); in b) we have the energy of 𝑛 molecules. For 1 molecule the energy will 

be 1/𝑛 which is the mean energy found in c) 

 

 

d)  

𝑍𝑁 = 𝑍1
𝑁 = (2 + 3𝑒−𝛽𝜀)

𝑁
 

 

Motivation: the molecules are distinguishable (by their location in the crystal) and do not 

interact with each other and can thus be considered as independent systems (see also B&B 

equation 20.42 and text before). 

 

e) 

Because,  ln 𝑍𝑁 = 𝑁 ln 𝑍1  

we have, 

𝑈 = −
𝜕 ln 𝑍𝑁

𝜕𝛽
= −𝑁

𝜕 ln 𝑍1

𝜕𝛽
= 𝑁〈𝐸〉 =

𝑁𝜀

1 +
2
3 𝑒

𝜀
𝑘𝑇

 

 

And  

 

𝐶𝑉 =
𝜕𝑈

𝜕𝑇
=

−𝑁𝜀

(1 +
2
3 𝑒

𝜀
𝑘𝑇)

2 ×
2

3
𝑒

𝜀
𝑘𝑇 ×

−𝜀

𝑘𝑇2
=

2

3
𝑁𝑘

(
𝜀

𝑘𝑇
)

2

𝑒
𝜀

𝑘𝑇

(1 +
2
3 𝑒

𝜀
𝑘𝑇)

2 

 

f) 

If 𝑇 → 0 then with  𝑥 =
𝜀

𝑘𝑇
→ ∞ 

 

𝐶𝑉 =
2

3
𝑁𝑘

𝑥2𝑒𝑥

(1 +
2
3 𝑒𝑥)

2 ≈
3

2
𝑁𝑘𝑥2𝑒−𝑥 =

3

2
𝑁𝑘 lim

𝑥→∞
𝑥2 𝑒−𝑥 = 0  

 

If 𝑇 → ∞ then with  𝑥 =
𝜀

𝑘𝑇
→ 0 

 

𝐶𝑉 =
2

3
𝑁𝑘

𝑥2𝑒𝑥

(1 +
2
3 𝑒𝑥)

2 ≈
2

3
𝑁𝑘

𝑥2(1 + 𝑥)

(1 +
2
3 (1 + 𝑥))

2 ≈
2

3
𝑁𝑘𝑥2

1

(
5
3)

2 → 0 

 

 

 



Problem 2 

a) 

Using the Boltzmann distribution we find, 

 

〈𝛼𝑥2〉 =
∫ 𝛼𝑥2𝑒−𝛽𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑑𝑥𝑑𝑣𝑥

∞

−∞

∫ 𝑒−𝛽𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
∞

−∞
𝑑𝑥𝑑𝑣𝑥

⇒ 

 

〈𝛼𝑥2〉 =
∫ 𝛼𝑥2𝑒−𝛽𝛼𝑥2

𝑑𝑥 ∫ 𝑒−
1
2

𝛽𝑀𝑣𝑥
2∞

−∞
𝑑𝑣𝑥

∞

−∞

∫ 𝑒−𝛽𝛼𝑥2
𝑑𝑥 ∫ 𝑒−

1
2

𝛽𝑀𝑣𝑥
2∞

−∞
𝑑𝑣𝑥

∞

−∞

⇒ 

 

 

〈𝛼𝑥2〉 =
∫ 𝛼𝑥2𝑒−𝛽𝛼𝑥2

𝑑𝑥
∞

−∞

∫ 𝑒−𝛽𝛼𝑥2
𝑑𝑥

∞

−∞

= −
𝜕 ln 𝐼

𝜕𝛽
 

 

where we have defined 𝐼 = ∫ 𝑒−𝛽𝛼𝑥2∞

−∞
𝑑𝑥. Substitute 𝑧2 = 𝛽𝑥2 then 𝑧 = √𝛽𝑥 and 𝑑𝑥 =

𝑑𝑧

√𝛽
 and the integral becomes, 

𝐼 =
1

√𝛽
∫ 𝑒−𝛼𝑧2

∞

−∞

𝑑𝑧 

and 

〈𝛼𝑥2〉 = −
𝜕 ln 𝐼

𝜕𝛽
= −

𝜕

𝜕𝛽
[ln

1

√𝛽
+ ln { ∫ 𝑒−𝛼𝑧2

∞

−∞

𝑑𝑧}] = − [√𝛽 (−
1

2

1

𝛽
3
2

) + 0] ⇒ 

 

〈𝛼𝑥2〉 =
1

2𝛽
=

1

2
𝑘𝑇 

 

Or using one of the integrals of the formula sheet (with 𝑐 = 𝛼𝛽) 

 

〈𝛼𝑥2〉 =
∫ 𝛼𝑥2𝑒−𝛼𝛽𝑥2

𝑑𝑥
∞

−∞

∫ 𝑒−𝛼𝛽𝑥2
𝑑𝑥

∞

−∞

= 𝛼

(
1
2 √

𝜋
𝑐3)

(√
𝜋
𝑐)

=
1

2
𝛼

1

𝑐
=

1

2
𝛼

1

𝛽𝛼
=

1

2
𝑘𝑇 

 

b) 

For a classical system in equilibrium with a heat bath at temperature 𝑇 every term in the 

Hamiltonian (energy) that is quadratic in one of the systems (independent) coordinates will 

contribute 
1

2
𝑘𝑇 to the mean energy of the system. 

  



c) 

〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉 = 𝑁〈𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒〉 = 𝑁 〈(
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2〉 = 𝑁 (2 ×
1

2
𝑘𝑇) = 𝑁𝑘𝑇 

 

d)  

At temperatures above 𝑇𝑟 the rotational mode is excited, leading to one extra quadratic 

term in 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 

𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2 +
𝐿2

2𝐼
 

 

with 𝐿 the angular momentum of the molecule along its rotational axis and 𝐼 its moment of 

inertia. 

At temperatures above 𝑇𝑣 the vibrational mode in the 𝑦-direction is also excited leading to 

two extra quadratic terms in 𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 

 

𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2 +
𝐿2

2𝐼
+

1

2
𝑀𝑣𝑦

2 + 𝛾𝑦2 

 

with 𝛾 another positive constant. 

 

For the mean energy of the crystal in the temperature range 𝑇𝑟 < 𝑇 < 𝑇𝑣 we have, using 

the equipartition theorem, 

〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉 = 𝑁〈𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒〉 = 𝑁 〈
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2 +
𝐿2

2𝐼
〉 =

3

2
𝑁𝑘𝑇 

and for 𝑇 > 𝑇𝑟, 

〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉 = 𝑁〈𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒〉 = 𝑁 〈
1

2
𝑀𝑣𝑥

2 + 𝛼𝑥2 +
𝐿2

2𝐼
+

1

2
𝑀𝑣𝑦

2 + 𝛾𝑦2〉 =
5

2
𝑁𝑘𝑇 

 

The heat capacities for the different temperature ranges we find with: 

 

𝐶𝑉 =
𝜕〈𝐸𝑐𝑟𝑦𝑠𝑡𝑎𝑙〉

𝜕𝑇
 

 

as 𝐶𝑉 = 𝑁𝑘, 𝐶𝑉 =
3

2
𝑁𝑘 and 𝐶𝑉 =

5

2
𝑁𝑘, respectively. 

 

The consequence of the third law is that 𝐶𝑉 → 0 when 𝑇 → 0 (see B&B page 205). 

 

This results in the following plot: 

 

 

 

 

  



 

PROBLEM 3 

a)  

Single molecule partition function for translational motion: 

 

𝑍1 = ∫ 𝑓(𝑝)𝑒−𝛽
𝑝2

2𝑚𝑑𝑝 =

∞

0

∫
𝑉

ℎ3
4𝜋𝑝2𝑒−𝛽

𝑝2

2𝑚𝑑𝑝

∞

0

=
4𝜋𝑉

ℎ3
∫ 𝑝2𝑒−𝛽

𝑝2

2𝑚

∞

0

𝑑𝑝 

 

Use the substitution 𝑥2 = 𝛽
𝑝2

2𝑚
 and thus 𝑝 = √

2𝑚

𝛽
𝑥 and 𝑑𝑝 = √

2𝑚

𝛽
𝑑𝑥 to find 

 

𝑍1 =
4𝜋𝑉

ℎ3
(

2𝑚

𝛽
)

3
2

∫ 𝑥2𝑒−𝑥2
𝑑𝑥 =

∞

0

4𝜋𝑉

ℎ3
(

2𝑚

𝛽
)

3
2 √𝜋

4
= 𝑉 (

2𝜋𝑚𝑘𝑇

ℎ2
)

3
2
 

The integral was solved using the formula sheet. 

 

b) 

𝑍1 = ∫ ∑ ∑ 𝑓(𝑝)𝑒
−𝛽(

𝑝2

2𝑚
+𝐸𝑖

𝑣𝑖𝑏+𝐸𝑗
𝑟𝑜𝑡)

𝑑𝑝

∞

𝑗=1

∞

𝑖=1

∞

0

= ∫ 𝑓(𝑝)𝑒−𝛽
𝑝2

2𝑚𝑑𝑝 ∑ ∑ 𝑒−𝛽(𝐸𝑖
𝑣𝑖𝑏+𝐸𝑗

𝑟𝑜𝑡)

∞

𝑗=1

∞

𝑖=1

∞

0

= ∫ 𝑓(𝑝)𝑒−𝛽
𝑝2

2𝑚𝑑𝑝 ∑ ∑ 𝑒−𝛽𝐸𝑖
𝑣𝑖𝑏

𝑒−𝛽𝐸𝑗
𝑟𝑜𝑡

∞

𝑗=1

∞

𝑖=1

∞

0

= ∫ 𝑓(𝑝)𝑒−𝛽
𝑝2

2𝑚𝑑𝑝 ∑ 𝑒−𝛽𝐸𝑖
𝑣𝑖𝑏

∑ 𝑒−𝛽𝐸𝑗
𝑟𝑜𝑡

∞

𝑗=1

∞

𝑖=1

= 𝑍1
𝑡𝑟𝑎𝑛𝑠𝑍1

𝑣𝑖𝑏𝑍1
𝑟𝑜𝑡

∞

0

= 𝑍1
𝑡𝑟𝑎𝑛𝑠𝑍1

𝑖𝑛𝑡 

c) 

The particles are indistinguishable (3 pts) because it is a gas and situations that have two 

or more particles occupying the same energy level do not occur (4 pts) because the gas is 

classical. 

 

d) 

Use the 𝑁-atom partition function: 

 



𝑍𝑁 =
1

𝑁!
(𝑍1)𝑁 =

1

𝑁!
(𝑍1

𝑡𝑟𝑎𝑛𝑠𝑍1
𝑖𝑛𝑡)

𝑁
=

1

𝑁!
(𝑉 (

2𝜋𝑚𝑘𝑇

ℎ2
)
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and use Helmholtz free energy, 

 

𝐹 = −𝑘𝑇 ln 𝑍𝑁  

To find the pressure, 

 

𝑝 = − (
𝜕𝐹

𝜕𝑉
)

𝑇
= 𝑘𝑇 (

𝜕 ln 𝑍𝑁

𝜕 𝑉
)

𝑇
= 𝑘𝑇 (

𝜕 (𝑁 ln 𝑉)

𝜕 𝑉
)

𝑇

=
𝑁𝑘𝑇

𝑉
 

 

Notice that all the factors in ln 𝑍𝑁 can be written as a sum of logarithms of which only the 

term ln 𝑉𝑁 = 𝑁 ln 𝑉 depends on the volume. All other terms become zero after the 

differentiation with respect to 𝑉. The internal motion of the molecule does not depend on 

the volume so also the term ln(𝑍1
𝑖𝑛𝑡)

𝑁
 disappears after the differentiation with respect to 

𝑉. Consequently, the internal motion does not contribute to the pressure. 

 

 

 


